

# Deep TEN: Texture Encoding Network

Hang Zhang, Jia Xue, Kristin Dana





# Highlight and Overview

- Introduced Encoding-Net a new architecture of CNNs
- Achieved state-of-the-art results on texture recognition MINC-2500, FMD, GTOS, KTH, 4D-Light
- Released the ArXiv paper (CVPR 17) and Torch Implementation (GPU backend)





#### Challenges for Texture Recognition







#### **Classic Vision Approaches**







#### **Classic Vision Approaches**



Feature extraction

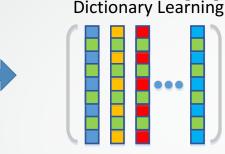


Filterbank responses or SIFT





# Classic Vision Approaches



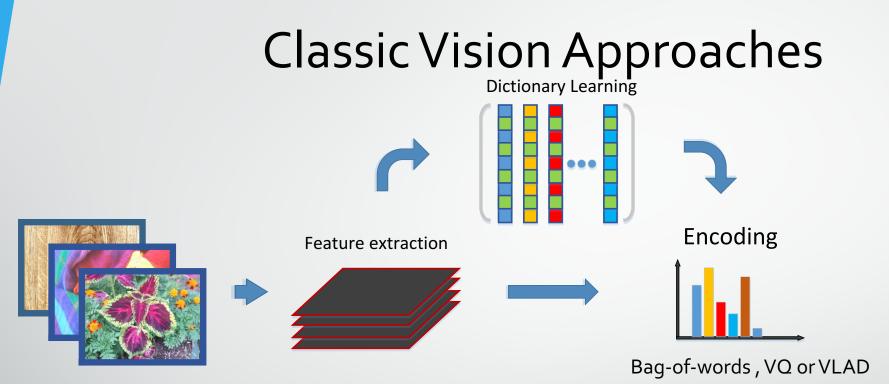


Feature extraction



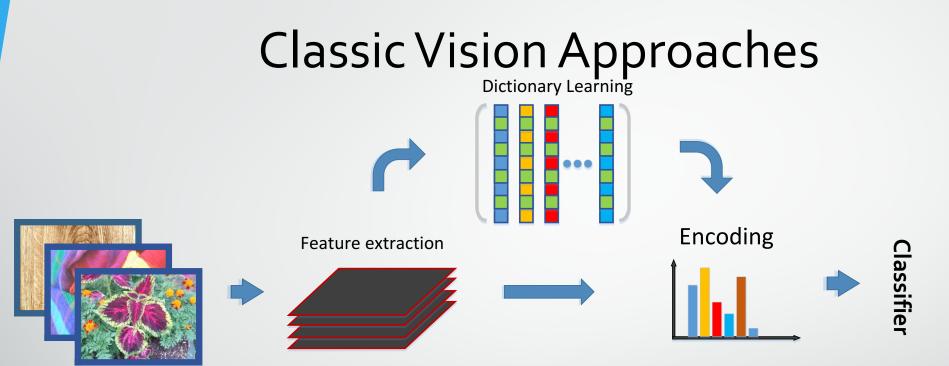






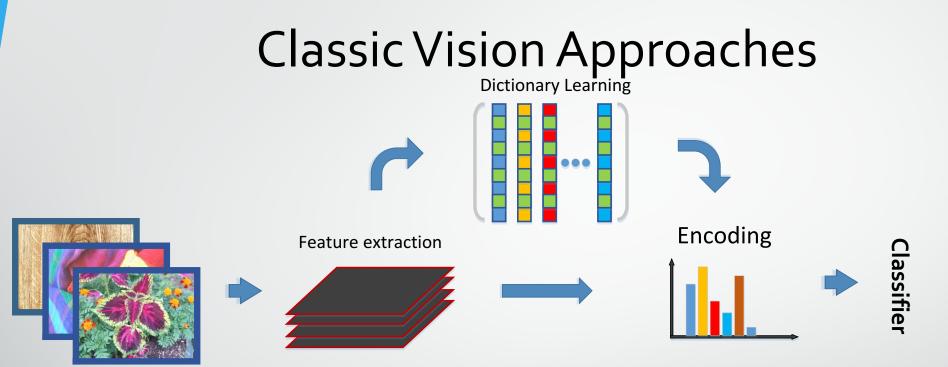








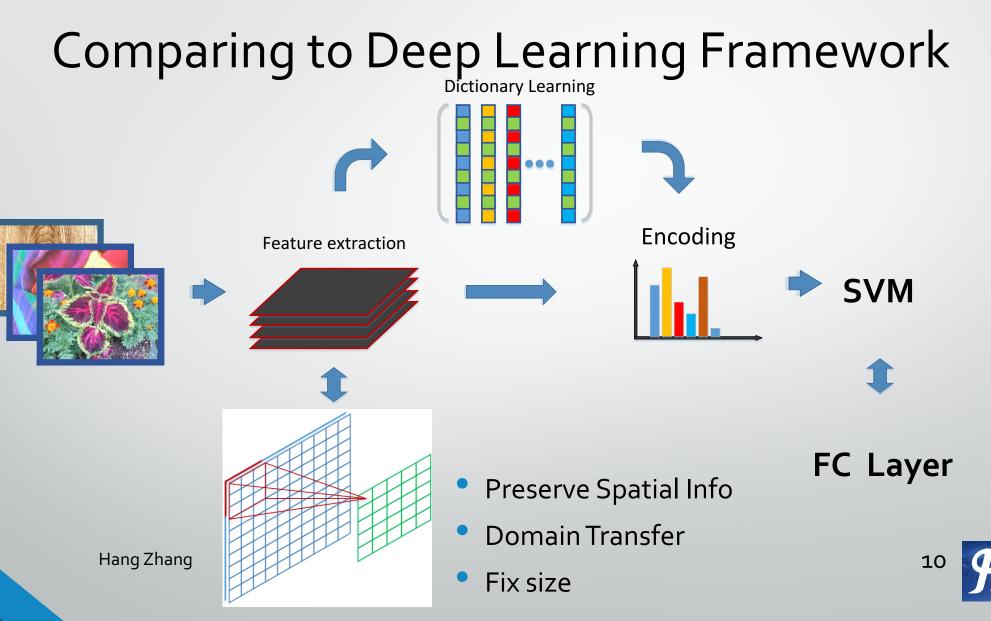




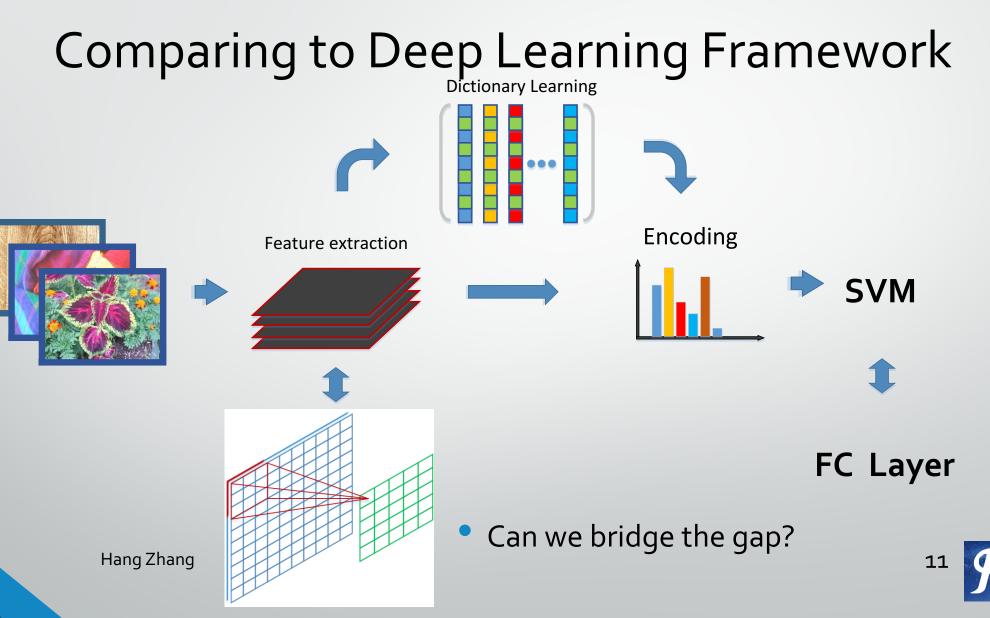
- The input image sizes are flexible
- No domain-transfer problem







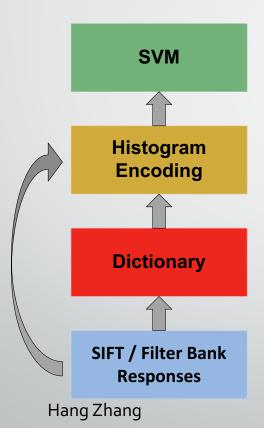






# Hybrid Solution

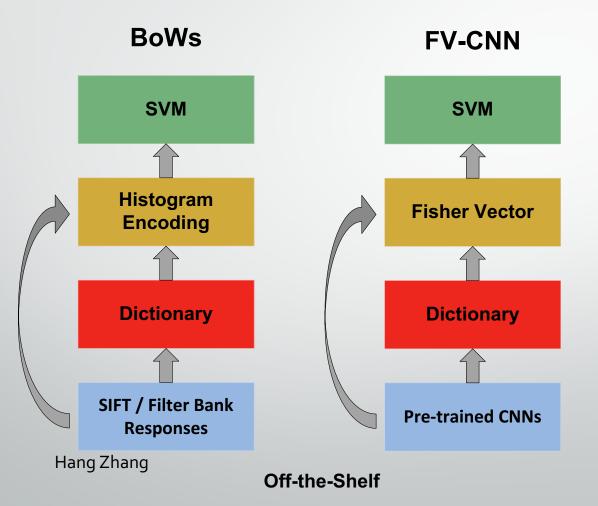
BoWs







#### Hybrid Solution and Its Limitation

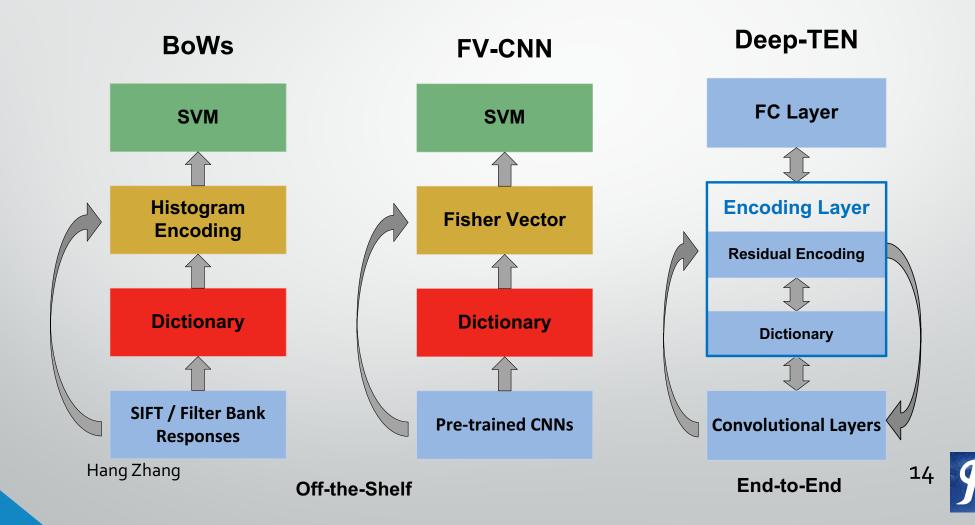


- Off-the-Shelf
- The dictionary and the encoders are fixed once built
- Feature learning and encoding are not benefiting from the labeled data





#### End-to-end Encoding





### Bag-of-Words (BoW) Encoder

- Given a set of visual features  $X = \{x_1, ..., x_N\}$ , and a learned codebook  $C = \{c_1, ..., c_K\}$  (the input features is d-dimension and N is number of visual features and K is number of codewords )
- The assignment weight  $a_{ik}$  correspond to the visual feature  $x_i$  assigned to each codeword  $c_k$ . Hard-assignment:  $a_{ik} = \delta(||x_i c_k||^2 = \min_{j \in \{1, \dots, K\}} \{||x_i c_j||^2\})$
- BoWs counts the occurrences of the visual words  $\sum_i a_i$





#### **Residual Encoders**

 The Fisher Vector, concatenating the gradient of GMM with respect to the mean and standard deviation

$$G_{d_{k}}^{X} = \sum_{i \in \mathbb{N}}^{N} a_{ik} (x_{i} - c_{k})$$
$$G_{\sigma_{k}}^{X} = \sum_{i=1}^{N} a_{ik} [(x_{i} - c_{k})^{2} - 1]$$

• VLAD (1<sup>st</sup> order, hard-assignment)

$$V_k = \sum_{i=NN(x_i)=d_k}^N (x_i - c_k)$$

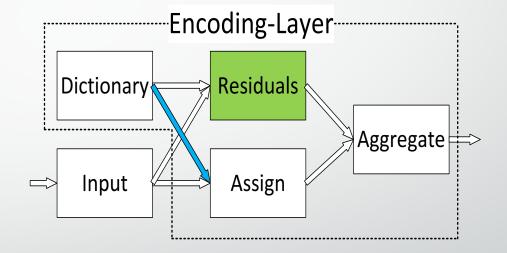




# **Residual Encoding Model**

- Residual vector  $r_{ik} = x_i c_k$
- Aggregating residuals with assignment weights

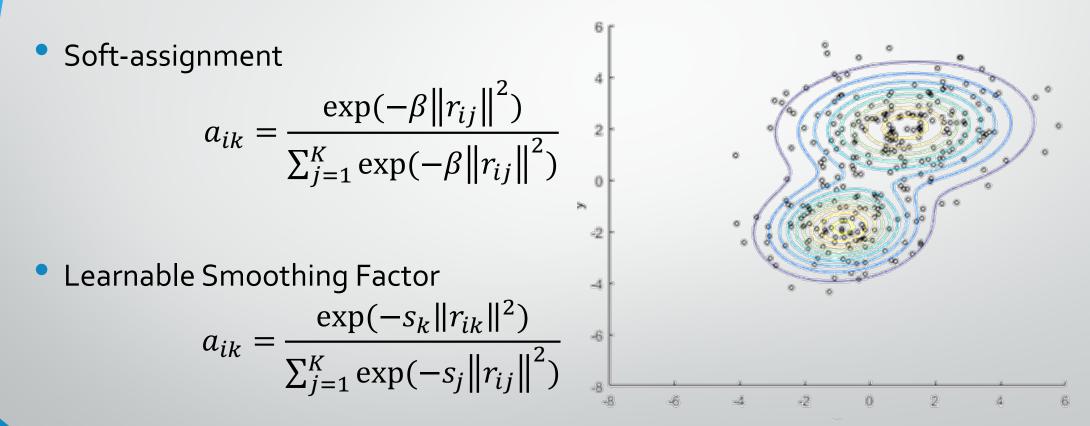
$$e_k = \sum_i a_{ik} r_{ik}$$







#### Feature Distributions and Assigning



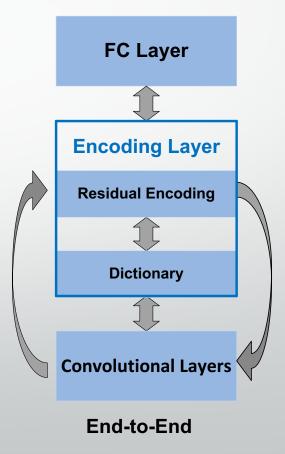




# End-to-end Learning

#### **Deep-TEN**

- The loss function is differentiable w.r.t the input X and the parameters (Dictionary D and smoothing factors s)
- The Encoding Layer can be trained endto-end by standard Stochastic Gradient Decent (SGD) with backpropagation







**Gradients w.r.t Input** X The encoder  $E = \{e_1, ..., e_K\}$ can be viewed as k independent sub-encoders. Therefore the gradients of the loss function  $\ell$  w.r.t input descriptor  $x_i$ can be accumulated  $\frac{d_{\ell}}{d_{x_i}} = \sum_{k=1}^{K} \frac{d_{\ell}}{d_{e_k}} \cdot \frac{d_{e_k}}{d_{x_i}}$ . According to the chain rule, the gradients of the encoder w.r.t the input is given by

$$\frac{d_{e_k}}{d_{x_i}} = r_{ik}^T \frac{d_{a_{ik}}}{d_{x_i}} + a_{ik} \frac{d_{r_{ik}}}{d_{x_i}},\tag{4}$$

where  $a_{ik}$  and  $r_{ik}$  are defined in Sec 2,  $\frac{d_{r_{ik}}}{d_{x_i}} = 1$ . Let  $f_{ik} = e^{-s_k ||r_{ik}||^2}$  and  $h_i = \sum_{m=1}^{K} f_{im}$ , we can write  $a_{ik} = \frac{f_{ik}}{h_i}$ . The derivatives of the assigning weight *w.r.t* the input descriptor is

$$\frac{d_{a_{ik}}}{d_{x_i}} = \frac{1}{h_i} \cdot \frac{d_{f_{ik}}}{d_{x_i}} - \frac{f_{ik}}{(h_i)^2} \cdot \sum_{m=1}^K \frac{d_{f_{im}}}{d_{x_i}},\tag{5}$$

where  $\frac{d_{f_{ik}}}{d_{x_i}} = -2s_k f_{ik} \cdot r_{ik}$ .





**Gradients w.r.t Codewords** *C* The sub-encoder  $e_k$  only depends on the codeword  $c_k$ . Therefore, the gradient of loss function *w.r.t* the codeword is given by  $\frac{d_\ell}{d_{c_k}} = \frac{d_\ell}{d_{e_k}} \cdot \frac{d_{e_k}}{d_{c_k}}$ .

$$\frac{d_{e_k}}{d_{c_k}} = \sum_{i=1}^N \left( r_{ik}^T \frac{d_{a_{ik}}}{d_{c_k}} + a_{ik} \frac{d_{r_{ik}}}{d_{c_k}} \right),\tag{6}$$

where  $\frac{d_{r_{ik}}}{d_{c_k}} = -1$ . Let  $g_{ik} = \sum_{m \neq k} f_{im}$ . According to the chain rule, the derivatives of assigning *w.r.t* the codewords can be written as

$$\frac{d_{a_{ik}}}{d_{c_k}} = \frac{d_{a_{ik}}}{d_{f_{ik}}} \cdot \frac{d_{f_{ik}}}{d_{c_k}} = \frac{2s_k f_{ik} g_{ik}}{(h_i)^2} \cdot r_{ik}.$$
 (7)





**Gradients w.r.t Smoothing Factors** Similar to the codewords, the sub-encoder  $e_k$  only depends on the k-th smoothing factor  $s_k$ . Then, the gradient of the loss function w.r.t the smoothing weight is given by  $\frac{d_\ell}{d_{s_k}} = \frac{d_\ell}{d_{e_k}} \cdot \frac{d_{e_k}}{d_{s_k}}$ .

$$\frac{d_{e_k}}{d_{s_k}} = -\frac{f_{ik}g_{ik} \|r_{ik}\|^2}{(h_i)^2} \tag{8}$$





#### Relation to Dictionary Learning

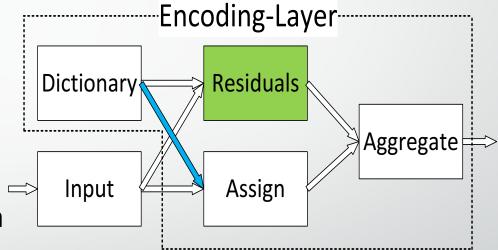
- Dictionary learning approaches usually are achieved by unsupervised grouping (e.g. K-means) or minimizing the reconstruction error (e.g. K-SVD).
- The Encoding Layer makes the inherent dictionary differentiable *w.r.t* the loss function and learns the dictionary in a **supervised** manner.





#### Relation to BoWs and Residual Encoders

- Generalize BoWs, VLAD & Fisher Vector
- Arbitrary input sizes, output fixed length representation
- NetVLAD decouples the codewords with their assignments
   a = f(x) instead of a = f(x, d)







#### Relation to Global Pooling Layer

- Sum Pooling (avg Pooling) Let K = 1 and d = 0, then  $e = \sum_{i=1}^{N} x_i$  and  $\frac{d_l}{d_{x_i}} = \frac{d_l}{d_e}$
- SPP-Layer (He et. al. ECCV 2014)
  Fix bin numbers instead of receptive field, reshaping, arbitrary input size)
- Bilinear Pooling (Lin *et. al. ICCV 2015)* sum of the outer product across different location





#### Methods Overview

|                               | Deep Features | Dictionary Learning | Residual Encoding | Any-size | Fine-tuning | End-to-end Classification |
|-------------------------------|---------------|---------------------|-------------------|----------|-------------|---------------------------|
| BoWs                          |               | $\checkmark$        |                   | √        |             |                           |
| Fisher-SVM [40]               |               | $\checkmark$        | $\checkmark$      | √        |             |                           |
| Encoder-CNN (FV [5] VLAD [18] | √             | $\checkmark$        | ✓                 | √        |             |                           |
| CNN                           | ✓             |                     |                   |          | ✓           | √                         |
| B-CNN [28]                    | ~             |                     |                   |          | ✓           |                           |
| SPP-Net [19]                  | ~             |                     |                   | √        | ✓           | √                         |
| Deep TEN (ours)               | ~             | $\checkmark$        | $\checkmark$      | √        | ✓           | √                         |

Table 1: Methods Overview. Compared to existing methods, Deep-Ten has several desirable properties: it integrates deep features with dictionary learning and residual encoding and it allows any-size input, fine-tuning and provides end-to-end classification.





### Domain Transfer

- The Residual Encoding Representation  $e_k = \sum_i a_{ik} r_{ik}$
- For a visual feature  $x_i$  that appears frequently in the data
  - It is likely to close to a visual center  $d_k$
  - $e_k$  is close to zero, since  $r_{ik} = x_i d_k \approx 0$
  - $e_j \ (j \neq k)$  is close to zero, since  $a_{ij} = \frac{\exp(-s_j \|r_{ij}\|^2)}{\sum_{m=1}^{K} \exp(-s_m \|r_{im}\|^2)} \approx 0$
- The Residual Encoding discard the frequently appearing features, which is like to be domain specific (useful for fine-tuning pre-trained features)





#### Experiments

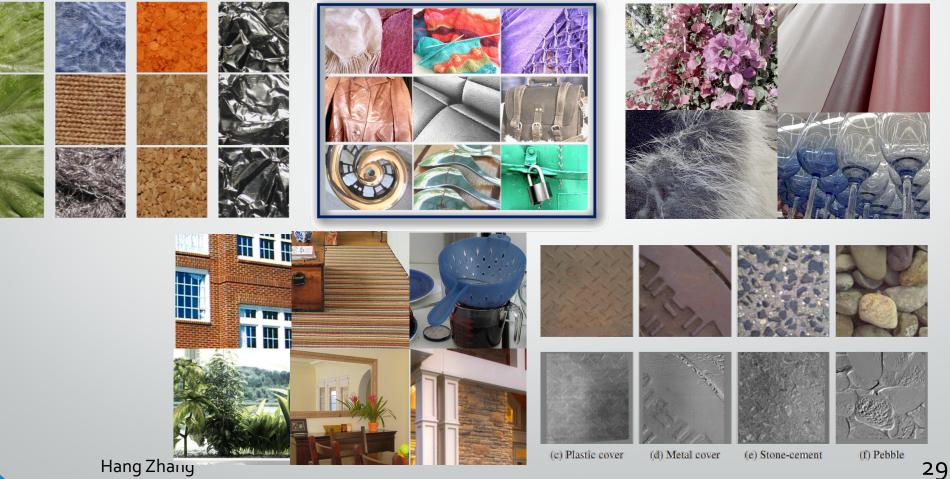
#### Datasets

- Gold-standard material & texture datasets: MINC-2500, KTH, FMD
- 2 Recent datasets: *GTOS*, *Light Field*
- General recognition datasets: *MIT-Indoor, Caltech-101*
- Baseline approaches (off-the-shelf)
  - FV-SIFT (128 Gaussian Components,  $32K \rightarrow 512$ )
  - FV-CNN (Cimpoi *et. al.* pre-trained VGG-VD & ResNet, 32GMM)





#### Dataset Examples





#### **Deep-TEN** Architecture

|              | 4                          | D TEN 50                        |  |  |  |
|--------------|----------------------------|---------------------------------|--|--|--|
|              | output size                | Deep-TEN 50                     |  |  |  |
| Conv1        | 176×176×64                 | $7 \times 7$ , stride 2         |  |  |  |
|              | 88×88×256                  | $3 \times 3$ max pool, stride 2 |  |  |  |
| Res1         |                            | 1×1,64                          |  |  |  |
| IXC51        | 00/00/200                  | 3×3,64 ×3                       |  |  |  |
|              |                            | 1×1, 256                        |  |  |  |
|              |                            | [ 1×1, 128 ]                    |  |  |  |
| Res2         | $44 \times 44 \times 512$  | 3×3, 128 ×4                     |  |  |  |
|              |                            | 1×1, 512                        |  |  |  |
|              |                            | [ 1×1, 256 ]                    |  |  |  |
| Res3         | 22×22×1024                 | 3×3, 256 ×6                     |  |  |  |
|              |                            | 1×1, 1024                       |  |  |  |
|              |                            | [ 1×1, 512 ]                    |  |  |  |
| Res4         | $11 \times 11 \times 2048$ | 3×3, 512 ×3                     |  |  |  |
|              |                            | 1×1, 2048                       |  |  |  |
| Projection   | 121×128                    | conv 1×1, 2048⇒128              |  |  |  |
| + Reshape    | 121×120                    | W×H×D⇒N×D                       |  |  |  |
| Encoding     | 32×128                     | 32 codewords                    |  |  |  |
| L2-norm + FC | n classes                  | $1 \times 1 \mathrm{FC}$        |  |  |  |

Table 2: Deep-TEN architectures for adopting 50 layer pretrained ResNet. The  $2^{nd}$  column shows the featuremap sizes for input image size of  $352 \times 352$ . When multi-size training for input image size  $320 \times 320$ , the featuremap after Res4 is  $10 \times 10$ . We adopt a  $1 \times 1$  convolutional layer after Res4 to reduce number of channels.





#### Comparing to the Baselines

|                 | MINC-2500 | FMD                          | GTOS     | KTH      | 4D-Light         | MIT-Indoor | Caltech-101 |
|-----------------|-----------|------------------------------|----------|----------|------------------|------------|-------------|
| FV-SIFT         | 46.0      | 47.0                         | 65.5     | 66.3     | 58.4             | 51.6       | 63.4        |
| FV-CNN (VGG-VD) | 61.8      | 75.0                         | 77.1     | 71.0     | 70.4             | 67.8       | 83.0        |
| Deep-TEN (ours) | 80.6      | $80.2{\scriptstyle \pm 0.9}$ | 84.3±1.9 | 82.0±3.3 | $81.7_{\pm 1.0}$ | 71.3       | 85.3        |

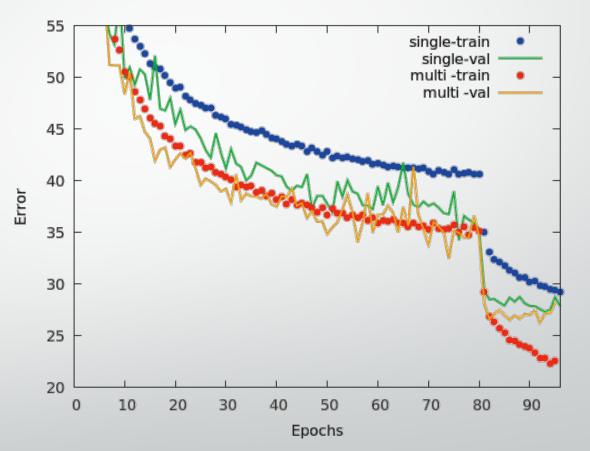
Table 3: The table compares the recognition results of Deep-TEN with off-the-shelf encoding approaches, including Fisher Vector encoding of dense SIFT features (FV-SIFT) and pre-trained CNN activations (FV-CNN) on different datasets using single-size training. Top-1 test accuracy mean $\pm$ std % is reported and the best result for each dataset is marked bold. (The results of Deep-TEN for FMD, GTOS, KTH datasets are based on 5-time statistics, and the results for MINC-2500, MIT-Indoor and Caltech-101 datasets are averaged over 2 runs. The baseline approaches are based on 1-time run.)





## Multi-size Training (using different image sizes)

- Deep-TEN ideally accepts arbitrary sizes (larger than a constant)
- Training with predefined sizes iteratively in different epochs w/o modifying the solver
- Adopt single-size testing for simplicity





# Multi-size Training

|                       | MINC-2500 | FMD              | GTOS     | KTH      | 4D-Light             | MIT-Indoor |
|-----------------------|-----------|------------------|----------|----------|----------------------|------------|
| FV-CNN (VGG-VD) multi | 63.1      | 74.0             | 79.2     | 77.8     | 76.5                 | 67.0       |
| FV-CNN (ResNet) multi | 69.3      | 78.2             | 77.1     | 78.3     | 77.6                 | 76.1       |
| Deep-TEN (ours)       | 80.6      | 80.2±0.9         | 84.3±1.9 | 82.0±3.3 | $81.7_{\pm 1.0}$     | 71.3       |
| Deep-TEN (ours) multi | 81.3      | $78.8_{\pm 0.8}$ | 84.5±2.9 | 84.5±3.5 | 81.4 <sub>±2.6</sub> | 76.2       |

Table 4: Comparison of single-size and multi-size training.





# Comparing to State-of-the-Art

|                  | MINC-2500            | FMD                     | GTOS                 | KTH                        | 4D-Light              |
|------------------|----------------------|-------------------------|----------------------|----------------------------|-----------------------|
| Deep-TEN* (ours) | 81.3                 | 80.2±0.9                | 84.5 <sub>±2.9</sub> | $84.5{\scriptstyle\pm3.5}$ | $81.7_{\pm 1.0}$      |
| State-of-the-Art | $76.0_{\pm 0.2}$ [2] | 82.4 <sub>±14</sub> [5] | N/A                  | 81.1±1.5 [4]               | $77.0_{\pm 1.1}$ [43] |

- Prior approaches
  - (1) relies on assembling features
  - (2)adopts an additional SVM classifier for classification.





# Extra Thoughts

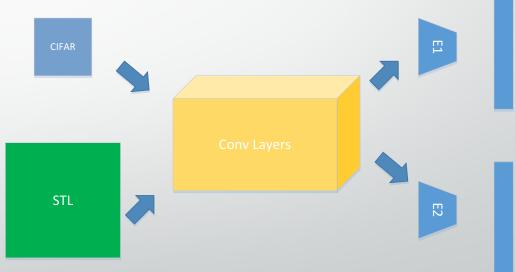
- So many labeled datasets: object recognition, scene understanding, material recognition
- How to benefit from them
  - Simply merging datasets (different label strategy)
  - Share convolutional features (domain transfer problem)





# Joint Encoding

- Multi-task learning
- Encoding Layer carries the domain specific information
- Convolutional Layers are generic
- Joint training on two datasets
  - CIFAR-10 (50,000 training images with size 36×36)
  - STL-10 (5,000 training images with size 96×96)







### **Experimental Results for Joint Training**

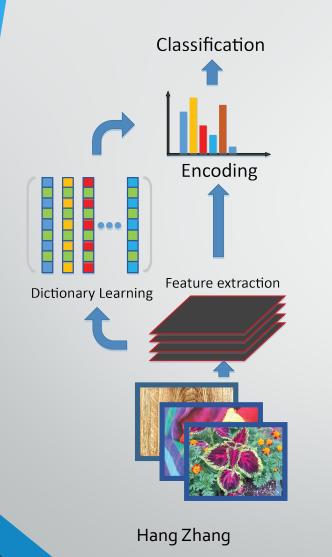
- Joint training on two datasets (simple network architecture)
  - CIFAR-10 (50,000 training images with size 36×36)
  - STL-10 (5,000 training images with size 96×96)

|                       | STL-10     | CIFAR-10 |
|-----------------------|------------|----------|
| Deep-TEN (Individual) | 76.29      | 91.5     |
| Deep-TEN (Joint)      | 87.11      | 91.8     |
| State-of-the-Art      | 74.33 [49] | -        |

The SoA for CIFAR-10 is 95.4% using 1,001 layers ResNet (He *et. al. ECCV 2016*)







# Summary

- Proposed a new model
  - Integrated the entire dictionary learning and encoding into a single layer of CNN
  - Generalize residual encoders (VLAD, FV), suitable for texture recognition and achieved state-of-the-art results
- Introduced a new CNN architecture
  - Making deep learning framework more flexible by allowing arbitrary input image sizes
  - Carries domain-specific information and make the learned features easier to transfer





### Thank you!

 We provide efficient Torch implementation with CUDA backend at <u>https://github.com/zhanghang1989/Deep-Encoding</u>

